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Heterogeneous condensation of vapours mixed with a carrier gas in the stagnation
point boundary layer flow near a cold wall is considered in the presence of solid
particles much larger than the mean free path of vapour particles. The supersaturated
vapour condenses on the particles by diffusion, and particles and droplets are
thermophoretically attracted to the wall. Assuming that the heat of vaporization
is much larger than kBT̃∞, where T̃∞ is the temperature far from the wall, vapour
condensation occurs in a condensation layer (CL). The CL width and characteristics
depend on the parameters of the problem, and a parameter R yielding the rate of
vapour scavenging by solid particles is particularly important. Assuming that the CL
is so narrow that temperature, particle density and velocity do not change appreciably
inside it, an asymptotic theory is found, the δ-CL theory, that approximates very well
the vapour and droplet profiles, the dew point shift and the deposition rates at the
wall for wide ranges of the wall temperature T̃w and the scavenging parameter R.
This theory breaks down for T̃w very close to the maximum temperature yielding
non-zero droplet deposition rate, T̃w,M . If the width of the CL is assumed to be
zero (0-CL theory), the vapour density reaches local equilibrium with the condensate
immediately after it enters the dew surface. The 0-CL theory yields appropriate
profiles and deposition rates in the limit as R → ∞ and also for any R, provided T̃w is
very close to T̃w,M . Nonlinear multiple scales also improve the 0-CL theory, providing
good uniform approximations to the deposition rates and the profiles for large R or
for moderate R and T̃w very close to T̃w,M , but it breaks down for other values of T̃w

and small R.

1. Introduction
The effects of condensation in fluid flows have been studied theoretically and

experimentally in many situations of interest including Prandtl–Meyer flows describing
the trailing edge of the blades in steam turbines (Delale & Crighton 1998), Ludwieg
shock-tube experiments (Luo et al. 2007) and condensation trail formation in
aircraft wakes (Paoli, Helie & Poinsot 2004). During many deposition processes,
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heterogeneous condensation of vapours on particles and transport towards cold walls
occur. Examples include vapour deposition from combustion gases (Castillo & Rosner
1988, 1989), fouling and corrosion in biofuel plants (Pyykönen & Jokiniemi 2003),
outside vapour deposition (OVD) processes used for making optical fibres (Filippov
2003; Tandon & Murnagh 2005), chemical vapour deposition, vapour condensation
and aerosol capture by cold plates or rejection by hot ones (Rosner 2000). In these
situations, deposition of particles and condensed vapour in cold walls is enhanced by
thermophoresis which drives particles and droplets towards the plate (Batchelor &
Shen 1985; Gökoglu & Rosner 1986).

In this paper, we consider heterogeneous condensation of vapours mixed with a
carrier gas in the stagnation point boundary layer flow near a cold wall. This problem
was already studied theoretically by Gökoglu & Rosner (1986), Castillo & Rosner
(1988, 1989) and Filippov (2003) in the case of diluted vapours in a carrier gas
and a diluted suspension of solid particles upon which the vapour may condense.
Rosner and co-authors consider the example of Na2SO4 vapours in air whereas
Filippov (2003) considers deposition of germanium vapours in a mixture of products
of stoichiometric methane combustion. Castillo & Rosner (1988, 1989) study a simple
thermophysical model in which the carrier gas is considered to be incompressible, the
Soret and Dufour effects are ignored and the particles and droplets move towards
the wall by thermophoresis (Davis 1983; Zheng 2002). Gökoglu & Rosner (1986)
and Filippov (2003) deal with more complicated thermophysical models in which the
carrier gas is compressible, its viscosity has an algebraic dependence with temperature
and the Soret effect is included. In all cases, the presence of vapours and suspended
solid particles does not affect the laminar boundary layer flow of the carrier gas,
which is described by coupled ordinary differential equations in a similarity variable.
If the heat of vaporization is much larger than the thermal energy (temperature
times the Boltzmann constant) far from the wall, vapour condensation occurs in a
condensation layer (CL) whose distance to the wall, width and characteristics depends
on the parameters of the problem. Outside the CL, the vapour is undersaturated and it
cannot condense on the solid particles suspended in the carrier gas. In contrast to this
dry region, there is a condensation region closer to the cold wall where condensation
on the particles may occur.

There are different theories describing the condensation region. The simplest theory,
given by Castillo & Rosner (1989), assumes that the with of the CL is zero and that
the vapour is in equilibrium with the condensed liquid at the dew surface. We call this
approximation the 0-CL theory and it has the advantage that no specific mechanism
of the condensation of supersaturated vapour on suspended solid particles needs to
be considered. The 0-CL theory is a good approximation to the numerical solution of
the complete thermophysical model (Castillo & Rosner 1988), if vapour is scavenged
by the solid particles at a high rate before it can condense directly on the cold wall.
Correction to the 0-CL theory is given by Filippov (2003) for his more complete
thermophysical model. He uses a method of multiple scales with a linear relation
between fast and slow spatial variables to describe the CL. This approximation
is then matched to the numerical solution of the flow problem in the dry region
outside the CL. The resulting values of the deposition rates are studied for different
versions of his thermophysical model and compared to similar results obtained with
the simplified model of incompressible carrier gas. Filippov (2003) does not solve
numerically the equations of the complete thermophysical model inside the CL and
therefore does not compare the results of his theory with a numerical solution of the
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complete model. In addition, Filippov’s (2003) multiple scales theory is not consistent
for it would lead to contradictory results had the next order in this method been
carried out.

In this paper, we revisit the 0-CL theory obtaining new formulas for the dew point
shift and the deposition rates and we give two new asymptotic theories, one based on
matched asymptotic expansions (the δ-CL theory) and another on nonlinear multiple
scales (NLMS). These two new theories give a complete description of vapour density
profiles and deposition rates for a wide range of wall temperatures and compare very
well with the numerical solution of the complete model, much better, in fact, than
the 0-CL theory.

To present our theories, we have adopted the simple thermophysical model of
Castillo & Rosner (1988) with one change. Castillo & Rosner (1988) assume that
supersaturated vapour condenses on solid particles according to the free molecular
regime law. They consider as an example Na2SO4 vapours in air with a diluted
suspension of solid particles with radius 1 micron. In this case, the mean free path
of vapour particles is three tenths of the particle radius, so we have assumed that
the supersaturated vapour condenses on the particles by diffusion. We present three
different asymptotic theories of the condensation process, calculate the shift in the
dew point interface due to the flow, the vapour density profile and the deposition
rates at the wall and compare them to direct numerical simulation of the equations
governing the model. Firstly, we revisit the 0-CL theory in Castillo & Rosner (1989)
and give approximate formulas for the dew point shift, the location of the dew
point interface and the deposition rates. We also find a formula for the maximum
value of the wall temperature for which the deposition rate of condensate carried
by droplets to the wall is not zero. This maximum wall temperature is smaller than
the dew point temperature in the absence of flow. The second theory is based on
matched asymptotic expansions and it is a good correction to the 0-CL theory at
any scavenging rate except when the wall temperature is very close to its maximum
value for condensate deposition via droplets. Instead of assuming that the CL has
zero width, we consider a CL of finite width δlb (small compared with the width
of the Hiemenz boundary layer lb, Schlichting & Gersten 2000) detached from the
wall, and within which the vapour density has not yet reached local equilibrium
with the liquid. In this δ-CL theory, the temperature, the flow and thermophoretic
velocities and the particle density are constant within the thin CL. This assumption
is questionable if the temperature at the wall T̃w is so high that the CL is attached
to the wall, which occurs for T̃w near the maximum temperature yielding non-zero
droplet deposition rate T̃w,M . In fact, for T̃w slightly below T̃w,M , the δ-CL theory
yields unrealistic values of the deposition rates. The third theory is NLMS method
which corrects the 0-CL theory for high vapour scavenging rates and is free from the
inconsistencies of Filippov’s (2003) theory. We have compared the results of the three
asymptotic theories (in particular the approximate deposition rates at the wall they
provide) to the numerical solution of the complete model. In the limit as l2b times
the radius of the solid particles is large compared to the reciprocal of the particle
number density (large vapour scavenging by particles), the NLMS method and the
δ-CL theory yield very good approximations to the vapour density and deposition
fluxes at the wall. For moderate and low scavenging rates, the δ-CL theory provides
the best approximations to the vapour and droplet density profiles and deposition
rates at the wall except for T̃w slightly below T̃w,M . For such values of T̃w , the NLMS
theory is the best approximation.
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Even though we have presented asymptotic results for the thermophysical model
by Castillo & Rosner (1988) (which is relatively simple and can be numerically solved
at a lower computational cost), our theories should also apply to the more complete
and computationally costlier thermophysical models by Gökoglu & Rosner (1986)
and Filippov (2003) for which the comparisons with numerical results are much more
expensive.

The rest of the paper is organized as follows. Section 2 describes the thermophysical
model we use. In § 3, the equations of the model are specialized to the simple case
of stagnation point flow. We also derive exact expressions for the deposition rates.
Section 4 contains the results of using the 0-CL theory which considers the vapour
to be in equilibrium with the condensed liquid at the dew surface. If the CL is well
detached from the wall and its width is small but not zero, we use a description by
means of matched asymptotic expansions in § 5: the δ-CL theory. Section 6 describes a
multiple scales method that is useful when there is strong scavenging of vapour by the
solid particles and therefore the length needed for the vapour concentration to decay
to its equilibrium value is very small. Section 7 contains comparison of the results of
our different approximations to a direct numerical solution of the governing equations
for stagnation flow. Lastly § 8 contains a discussion of our results and conclusions.

2. Model
Consider a dilute vapour of number density c̃(x̃) in a carrier gas that contains a

small amount of solid single-size particles. The mass fraction of vapour and of solid
particles are sufficiently small with respect to the mass fraction of the carrier gas, so
that the velocity and temperature fields (assumed to be stationary) ũ(x̃) and T̃ (x̃) are
not affected by the condensation and deposition processes. The solid particles can act
as condensation sites for the vapour. Let n∗ be the volume of a particle divided by
the molecular volume of condensed vapour, so that a solid particle is equivalent to n∗
molecules of vapour. Then a droplet of liquid coating on a solid particle is equivalent
to ñ(x̃) vapour molecules, in the sense that ñ equals the volume of a droplet (particle
plus condensed vapour) divided by the molecular volume of condensed vapour. Thus,
the number of liquid molecules coating a given solid particle is ñ(x̃) − n∗. Let ρ̃(x̃)
be the number density of droplets, so that ρ̃(x̃) [ñ(x̃) − n∗] is the number density of
the condensate. Since the number of droplets equals the number of solid particles,
the continuity equation for ρ̃ is

∇̃ ·
[(

ũ − αν
∇̃T̃

T̃

)
ρ̃

]
= 0. (2.1)

In this equation, the velocity of droplets equals the flow velocity plus the thermo-
phoretic velocity which is −αν∇̃ ln T̃ (ν is the kinematic viscosity of the carrier gas
and α is a dimensionless thermophoretic coefficient which depends on the particle
radius). We shall assume that the carrier gas is incompressible. This leads to simpler
equations and asymptotic expressions but it also overestimates the particle deposition
rates (cf. figure 7 in Filippov 2003). For wall temperatures larger than T̃∞/2, this effect
is not too large. Our asymptotic theories also apply to more realistic models including
compressibility of the carrier gas. For an incompressible carrier gas, (2.1) yields(

ũ − αν
∇̃T̃

T̃

)
· ∇̃ρ̃ = ανρ̃ ∇̃ · ∇̃T̃

T̃
. (2.2)
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The mean free path λvg of vapours diluted in a carrier gas is small compared to the
size of the particles suspended in the gas. In fact, for Na2SO4 vapours in air, the ratio
of their molecular weights is z = 142/28, so that the mean free path λvg of vapours
relative to that of pure air λg is (Davis 1983)

λvg =

√
2

1 + z

4 λg

(1 + σv/σg)2
, (2.3)

where σv and σg are the collision diameters of the vapour and of air molecules,
respectively. We estimate σg =3.7 × 10−8 cm (based on the collision diameter of
nitrogen) and σv = 5.5 × 10−8 cm (based on the molecular volume of Na2SO4 in the
solid phase). Hence, λvg/λg = 0.371, according to (2.3). At T̃ = 300 K, λg = 0.065 μm,

and at T̃ = 1400 K it is 1400/300 times this, or 0.3 μm. Equation (2.3) yields
λvg =0.11 μm. Instead of (2.3), we may use the average length over which a vapour
molecule randomizes its momentum (loses its sense of direction), see (8) in Peeters,
Luijten & van Dongen (2001)

λvg =

√
1 + z

2

4 λg

(1 + σv/σg)2
, (2.4)

which yields λvg =0.34 μm at T̃ = 1400 K. This is still relatively small. Thus, we can
consider that supersaturated vapour condenses on a spherical particle of radius 1 μm
by diffusion. The diffusive flux of vapour diluted in the incompressible carrier gas
is J̃v = D4πr̃2∂c̃/∂r̃ , which yields c̃(r̃) = c̃ − J̃ v/(4πDr̃) provided the flux is constant
and c̃ is the vapour density far from the droplet whose radius is a. At the droplet,
c̃(a) = c̄ < c̃, so that the diffusive flux towards the droplet is J̃v = 4πDa(c̃ − c̄), and it
should equal the rate at which the droplet captures vapour molecules, dñ/dt̃ . In the
stationary gas flow we consider, dñ/dt̃ = (ũ − να∇̃ ln T̃ ) · ∇̃ñ. The simplest model for
the vapour concentration at the surface of a droplet is that absorption and desorption
of vapour molecules is so fast that c̄ = c̃e, the equilibrium number density of vapour.
Since a = [3vñ/(4π)]1/3 (v is the molecular volume of vapour), we have

(
ũ − αν

∇̃T̃

T̃

)
· ∇̃ñ = Dlñ1/3(c̃ − c̃e) H (c̃ − c̃e), where l = (48π2v)1/3, (2.5)

and H (x) is the Heaviside unit step function. If c̃ < c̃e (the vapour concentration far
from the droplets is smaller than the equilibrium concentration at the droplet surface),
the vapour does not condense and the droplets do not grow. Equation (2.5) is the
equivalent of (2.1) for the condensate (ρ (n − n∗) instead of ρ in (2.1)) accounting for
the condensate source term. Equation (2.5) states that the steady growth of condensate
due to gas advection and thermophoresis (left-hand side term) equals the growth of
condensate due to vapour condensation on the particles (right-hand side term) when
both terms are divided by the number density of droplets ρ.

For the relatively large solid particle sizes we consider (about 1 micron), the
equilibrium number density for which vapour coexists with a droplet is very close to
the equilibrium number density for which vapour coexists with a half-space of liquid
(assuming that the interphase is planar). The latter is given by the Clausius–Clapeyron
relation, which for the case of an incompressible carrier gas, is

c̃e

c̃∞
=

T̃d

T̃
exp

(
Λ

kBT̃d

− Λ

kBT̃

)
. (2.6)
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Here, c̃∞ is a reference vapour density, Λ is the heat of vaporization and T̃d is the
dew point temperature at which c̃∞ = c̃e in the absence of flow. In the presence of flow,
the dew point temperature changes and to determine its shift is part of the problem
we have to solve.

Initially, if we have vapour at density c̃∞ and temperature T̃∞ > T̃d , and lower
the temperature below T̃d , the vapour density c̃∞ is supersaturated. Then the solid
particles carried by the gas act as condensation centres and the vapour can condense
on them forming large droplets – so large that capillary (Kelvin) effects are negligible.
We consider only heterogeneous condensation of vapour on solid particles, thereby
ignoring possible homogeneous condensation of vapour into droplets. The vapour
follows the carrier gas flow and we neglect the Soret effect (Castillo & Rosner 1988).
The solution of more detailed models (for example in OVD) show that changes due to
the Soret effect are relatively small (Filippov 2003, see also Garcı́a Ybarra & Castillo
1997 for the case in which the Soret effect plays an important role). Then the balance
equation for the vapour number density is

(ũ · ∇̃ − DΔ̃)c̃ = −Dlρ̃ñ1/3(c̃ − c̃e) H (c̃ − c̃e). (2.7)

Note that minus the right-hand side of this equation equals that of (2.5) times ρ̃; the
negative sign occurs because a source for the condensate appears as a sink for the
vapour. Then we can rewrite (2.7) as

(ũ · ∇̃ − DΔ̃)c̃ = −ρ̃

(
ũ − αν

∇̃T̃

T̃

)
· ∇̃ñ. (2.8)

The temperature equation is

ũ · ∇̃T̃ = κΔ̃T̃ , (2.9)

where κ is the thermal diffusivity. In this equation, we have ignored the Dufour effect
(Garcı́a Ybarra & Castillo 1997), and also the effect of the latent heat of condensation
because the vapour mass fraction is very small compared to that of the carrier gas.
Lastly, we need the equation for the velocity field, but we will not specify it for the
time being because our theory can be applied to different flow fields.

The boundary conditions for our problem are as follows. The temperature at infinity
is T̃∞ and it is T̃w < T̃d < T̃∞ at the wall. Since T̃w < T̃d , we expect the vapour to have
condensed on the cold wall and the vapour at the wall to be in local equilibrium
with the liquid coating it. Thus c̃ = c̃e at the wall. At infinity, the vapour density and
droplet density are c̃∞ and ρ̃∞, respectively. At some distance from the wall, there is
an interface between the condensation region where vapour condenses on the solid
particles and coats them, and the outer region at a higher temperature where the
particles are dry. To locate this dew point interface Γ is part of the problem. On Γ ,
ñ= n∗, c̃ = c̃e(T̃∗) (from now onwards, the asterisk will identify magnitudes at the dew
interface), and the normal derivative of c̃ is continuous. Note that the dew point
temperature at Γ will be different from the dew point temperature in absence of flow
T̃d . In short, the following are the boundary conditions:

T̃ = T̃∞, c̃ = c̃∞, ρ̃ = ρ̃∞, at infinity, (2.10)

T̃ = T̃w, c̃ = c̃e(T̃w), at the wall, (2.11)

ñ = n∗, c̃ = c̃e(T̃∗), n · ∇̃c̃|Γ − = n · ∇̃c̃|Γ +, at Γ. (2.12)

Assuming that we have calculated the carrier gas flow, ũ(x̃), in principle we have
enough boundary conditions to determine T̃ , c̃, ρ̃, ñ and Γ .
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Figure 1. Sketch of stagnation point flow with particles representative of vapour
concentration.

(i) We solve the elliptic equation (2.9) for T̃ with one condition at infinity and
another at the wall, and the first-order equation (2.2) for ρ with one boundary
condition at infinity.

(ii) For a given location of Γ , the first-order equation (2.5) for ñ in the condensation
region has one boundary condition at Γ . The elliptic equation (2.7) for c̃ has Dirichlet
boundary conditions (2.10) at infinity and c̃ = c̃e(T̃∗) at Γ . Similarly, the equation for
c̃ in the condensation region satisfies (2.11) at the wall and c̃ = c̃e(T̃∗) at Γ .

(iii) Given an arbitrary location of Γ , the two elliptic problems for c̃ are solved
inside and outside the condensation region. Then the location of Γ is changed until
the additional condition (2.12) that the normal derivative of c̃ is continuous at Γ is
satisfied. This determines the position of the dew point interface.

Note that the vapour concentration c̃∗ at the dew point interface is smaller than c̃∞
because the condensation region is a vapour sink and the diffusion causes a c̃(x̃) < c̃∞
deficit even in the dry region outside the condensation region. Since c̃∗ = c̃e(T̃∗) and
c̃∞ = c̃e(T̃d), we have c̃e(T̃∗) < c̃e(T̃d). As c̃e(T̃ ) is an increasing function, we obtain
T̃∗ < T̃d; due to the flow, the temperature at the dew point interface Γ is lower than
the dew point temperature in the absence of flow T̃d .

3. Stagnation point flow
As an example, consider the dew point shift in a Hiemenz stagnation point flow

in the half space x̃ > 0 depicted in figure 1 (Schlichting & Gersten 2000). There is
a solid wall at x̃ = 0 and the x̃-velocity of the incoming flow is asymptotic to −γ x̃

as x̃ → +∞, with a given strain rate γ . The boundary layer thickness is lb =
√

ν/γ ,
which we shall adopt as the unit of length. Then the unit of velocity is ν/lb =

√
γ ν.

We shall adopt c̃∞, ρ̃∞, n∗ and T̃∞ as the units of vapour density, droplet density, n

and temperature, respectively. Their values are given in table 1.
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T̃∞ T̃d c̃∞ ρ̃∞ n∗ lb ν/ lb a∗ v

(K) (K) (cm−3) (cm−3) (mm) (cm s−1) (μm) cm3

1713 1400 1.9 × 1013 104 4.72 × 1010 6.26 0.24 1 8.87 × 10−23

Table 1. Typical parameters for heterogeneous condensation of Na2SO4 vapours in air
(Castillo & Rosner 1988).

The dimensionless x component of the velocity is a function of x, denoted by
−u(x), u > 0, whereas the dimensionless y component of the velocity is u′(x)y. (Here
and in the rest of the paper, f ′(x) means df/dx.) Hence u(x) is the parameter-free
solution of the well-known Hiemenz boundary value problem of stagnation in plane
flow (Schlichting & Gersten 2000):

u′′′ + uu′′ + 1 − u′2 = 0, x > 0, (3.1)

u(0) = u′(0) = 0, u′(+∞) = 1. (3.2)

In non-dimensional units, (2.9) becomes

T ′′ + Pr uT ′ = 0, x > 0, (3.3)

T (0) = Tw =
T̃w

T̃∞
, T (+∞) = 1, (3.4)

where Pr = ν/κ is the Prandtl number (which is 0.7 for air). Equations (2.2), (2.5)–(2.7)
with the boundary conditions (2.10)–(2.12) become(

u + α
T ′

T

)
ρ ′ = −αρ

(
T ′

T

)′

, x > 0, (3.5)

ρ(+∞) = 1, (3.6)(
u + α

T ′

T

)
n′ = −Nn1/3(c − ce), 0 < x < x∗ (3.7)

n(x∗) = 1, (3.8)

ce(x) =
Td

T (x)
exp

[
1

ε

(
1

Td

− 1

T (x)

)]
, (3.9)

c′′ + Sc uc′ = Rρn1/3(c − ce), 0 < x < x∗, (3.10)

c(0) = ce(0), c(x∗) = ce(x∗), (3.11)

c′′ + Sc uc′ = 0, x > x∗, (3.12)

c(x∗) = ce(x∗), c′(x∗−) = c′(x∗+), c(+∞) = 1, (3.13)

where x∗ is the location of the dew point interface Γ and

ε =
kBT̃∞

Λ
, Sc =

ν

D
, R =

νlρ̃∞n
1/3
∗

γ
, N =

Dc̃∞l

γ n
2/3
∗

=
c̃∞

ρ̃∞n∗Sc
R. (3.14)

Sc is the Schmidt number and l =(48π2v)1/3 and v is the molecular volume. Note
that ce given by the non-dimensional version of the Clausius–Clapeyron relation (2.6)
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is a function of T , and we are using the notation ce(x) = ce(T (x)) in (3.9). Using (3.10),
we can rewrite (3.7) as(

u + α
T ′

T

)
n′ = − N

Rρ
(c′′ + Sc uc′), 0 < x < x∗, (3.15)

which is analogous to (2.8). Defining U = u + α T ′/T , we can use n(x∗) = 1 and
integrate (3.15) to obtain

n(x) = 1 +
N

R

∫ x∗

x

c′′ + Sc uc′

ρU
dx, (3.16)

which on integrating by parts yields

n(x) = 1 +
N

R

[
c′

∗
ρ∗U∗

− c′(x)

ρ(x)U (x)
+

∫ x∗

x

Sc uU + u′

ρU 2
c′ dx

]
, (3.17)

due to (3.5). Note that (3.15)–(3.17) do not depend on the model we use to describe
vapour condensation on droplets.

In the limit as R → ∞, c ∼ ce for 0 < x < x∗ according to (3.10), and then (3.15)
yields the approximate value of n inside the condensation region. Note that the length
δ over which c decays to ce according to (3.10) is found from a dominant balance
between (c − ce)

′′ and the right-hand side of (3.10):

(c − ce)
′′ =

[c − ce]

δ2
= R [ρ] [c − ce] =⇒ δ =

1√
R [ρ]

,

where we have set the representative scale of n as [n] = 1. If we take [ρ] = ρ(x∗) ≡ ρ∗
as the scale of ρ, then c decays to ce on a length given by

δ =
1√
Rρ∗

, (3.18)

which goes to zero as R → +∞. In practice, ρ∗ is close to 1, and therefore R−1/2

measures the dimensionless length over which c decays to ce. This length is just the
width of the condensation layer in which there is supersaturation and therefore the
vapour condenses on droplets. If δ � x∗, the condensate arriving to the wall is mostly
due to the arrival of solid particles coated with liquid, whereas for larger δ, direct
condensation of vapour on the wall is important. Thus, the parameter R gives an
idea of the vapour scavenged by condensation on solid particles: the larger the R is,
the more vapour condenses on particles.

Representative values for the parameters (3.14) are given in table 2 for Na2SO4

vapours in air as in Castillo & Rosner (1988). The parameter R can be rewritten as

R = ρ̃∞n1/3
∗ ll2b = ρ̃∞(48π2v n∗)

1/3l2b = 4πa∗ρ̃∞l2b,

where lb =
√

ν/γ is the width of the Hiemenz boundary layer. For Na2SO4, whose mass
density is 2.66 g cm−13, we obtain a molecular volume v = 8.87×10−23 cm3 using a mo-
lecular weight of 142. A solid particle of radius a∗ = 1 μm has a volume equivalent to a
liquid drop with n∗ =4.72×1010 molecules. The prefactor R/l2b = 4πa∗ρ̃∞ is 12.57 cm−2

and R = 1 for a boundary layer which is 2.82 mm thick. For a typical boundary layer
experiment with a displacement thickness of 11 mm, lb = 1.1/1.72 = 0.63 cm, R = 4.93
and N = 0.11, which corresponds to entry A in table 2. Entry B corresponds to a R

that is 15 times larger than that in entry A. Entry C in table 2 corresponds to R and
N that are 150 and 15 times larger than those in entry A, respectively.
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– α ε(kBT̃∞/ Pr(κ/ Sc(ν/ R(4πa∗ρ̃∞l2b ) N ((4πa∗l
2
b c̃∞)/ δe(εT

2
∗ / δ(1/ μ Tw(T̃w/

– – Λ) D) D) (n∗Sc)) T ′
∗)

√
Rρ∗) (δ/δe) T̃∞)

A 0.1 0.0515 0.7 1.8 4.93 0.11 0.1572 0.4559 2.9001 0.5838
B 0.1 0.0515 0.7 1.8 73.95 0.11 0.1572 0.1177 0.7487 0.5838
C 0.1 0.0515 0.7 1.8 739.5 1.65 0.1572 0.0372 0.2366 0.5838

Table 2. Dimensionless parameters for A: lb = 6.26 mm, ρ̃∞ = 104 cm−3, B: lb = 6.26 mm,
ρ̃∞ = 1.5 × 105 cm−3 and C: lb = 2.42 cm, ρ̃∞ = 105 cm−3. The values of δe , δ and μ (which
depend on Tw) have been calculated using the 0-CL theory of § 4. Other values as in table 1.

We have used three different boundary layer widths and solid particle densities to
illustrate different asymptotic theories for the condensation layer based on the fact
that ε is typically small. In this case, the Clausius–Clapeyron relation (3.9) may be
written as

ce(x)

c∗
=

T∗

T (x)
exp

(
T (x) − T∗

εT (x)T∗

)
≈ exp

(
−x∗ − x

δe

)
,

provided

δe =
εT 2

∗
T ′

∗
. (3.19)

The equilibrium vapour concentration decays exponentially fast in a dimensionless
length δe given by (3.19). If δ � δe, the vapour density decays to ce(x) much faster
than the equilibrium vapour density decays to zero, even if δe or δ are not particularly
small. The simplest asymptotic theory we can propose is based on assuming δ = 0
and c(x) = ce(x) inside the dew surface, 0 < x < x∗. This is the simplified equilibrium
theory (or zero-width CL theory, 0-CL) already studied by Castillo & Rosner (1989).
If δ � δe, there is a thin CL of width δ inside the dew surface. A first correction
to the 0-CL theory is obtained by assuming that the CL is so narrow that ρ, T and
u do not differ appreciably from their values at x∗. This δ-wide CL theory (δ-CL
theory) corrects the simplified equilibrium theory even for relatively small values of
the scavenging parameter R as in case A of table 2 (cf. § 5). For large values of R as
in case C of table 2, δ → 0, and the length scale on which c − ce varies is much smaller
than x. Then a method of multiple scales may provide an accurate description of the
CL as shown in § 6. Our considerations on the validity of the 0-CL theory can be
repeated for a general boundary layer flow.

3.1. Deposition at the wall

At the wall, both vapour is directly condensed and droplets are deposited. The res-
pective fluxes of condensate at the wall are

−J̃v = D c̃′(0) =
Dc̃∞

lb
c′(0), (3.20)

−J̃c = ρ̃(0)Ũ (0)[n(0) − n∗] =
νρ̃∞n∗

lb

αT ′(0)ρ(0)[n(0) − 1]

T (0)
. (3.21)

Choosing νc̃∞/lb as the unit of flux, the non-dimensional fluxes are

Jv =
c′(0)

Sc
, (3.22)
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Jc =
R

N Sc

αρ(0) T ′(0)[n(0) − 1]

T (0)
=

ρ(0)U (0)

Sc

∫ x∗

0

c′′ + Sc uc′

ρU
dx, (3.23)

where we have omitted the minus signs and used (3.16). The total flux of condensate
at the wall is

J ≡ Jv + Jc =
c′(0)

Sc
+

R

N Sc
ρ(0)U (0)[n(0) − 1]. (3.24)

Using (3.17), this equation becomes

J =
ρ(0)U (0)

Sc

[
c′

∗
ρ∗U∗

+

∫ x∗

0

Sc uU + u′

ρU 2
c′ dx

]
. (3.25)

3.2. Formulas for the temperature profile and for the vapour concentration profile
in the dry region

The temperature profile is a solution of (3.3) and (3.4) and the vapour concentration
satisfies a similar equation (3.12) in the dry region, 0 <x <x∗, with boundary
conditions (3.13). The following argument (Yossi Farjoun, private communication
(2007).) provides an efficient way to solve these shooting problems. Note that c − 1 is
a solution of (3.12) with zero value at x = +∞ and that any multiple of this solution
also becomes zero at infinity (although of course it takes on a different value at the
other boundary). Thus, we consider the following universal problem:

ψ ′′ + Sc uψ ′ = 0, ψ(0) = 1, ψ(+∞) = 0. (3.26)

The unique solution of this problem yields the solution of (3.12) with boundary
conditions c(x∗) = c∗ and c(+∞) = 1:

c(x) = 1 +
c∗ − 1

ψ∗
ψ(x). (3.27)

Similarly,

T (x) = 1 + (Tw − 1) Φ(x), (3.28)

Φ ′′ + Pr uΦ ′ = 0, Φ(0) = 1, Φ(+∞) = 0, (3.29)

solves (3.3) with boundary conditions (3.4), T (0) = Tw , T (+∞) = 1. Analytic expres-
sions for ψ and Φ are found by direct integration of the linear equations (3.12) and
(3.3) with boundary conditions Φ(0) = ψ(0) = 1, Φ(+∞) = ψ(+∞) = 0:

ψ(x) =

∫ ∞
x

e−Sc
∫ y

0 udx ′
dy∫ ∞

0
e−Sc

∫ y

0 udx ′
dy

, Φ(x) =

∫ ∞
x

e−Pr
∫ y

0 udx ′
dy∫ ∞

0
e−Pr

∫ y

0 udx ′
dy

. (3.30)

If the dew point interface coincides with the wall, x∗ = 0, ψ∗ = ψ(0) = 1 and c(0) = ce(0).
Then (3.27) and (3.30) yield (cf. Castillo & Rosner 1988)

c(x) = ce(0) +
[1 − ce(0)]

∫ x

0
exp

(
− Sc

∫ y

0
udx ′) dy∫ ∞

0
exp

(
− Sc

∫ y

0
udx ′

)
dx

. (3.31)

The deposition flux due to droplets is zero and J = Jv is

J =
1 − ce(0)

Sc
∫ ∞

0
exp

(
− Sc

∫ y

0
udx ′

)
dx

. (3.32)
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3.3. Numerical method

We have used the following numerical procedure to find x∗. We numerically solve
the universal shooting problems (3.26) and (3.29) with sufficient accuracy. Similarly,
we numerically solve (3.1), (3.2), (3.5) and (3.6) to determine u and ρ with sufficient
accuracy. Then the temperature profile (3.28), u and ρ are known.

(i) We start from a trial value of x∗.
(ii) We numerically solve (3.10) for x <x∗ with initial conditions c(x∗) = c∗ = ce(x∗)

and c′(x∗) = c′
∗ = (c∗ − 1)ψ ′

∗/ψ∗ obtained from (3.27).
(iii) We compare the value c(0) given by the numerical solution with ce(0). If they

are not equal, we change the value of x∗ and repeat the procedure until we find
c(0) = ce(0).

4. Zero width condensation layer: simplified equilibrium model
In this section, we shall assume that the relaxation to local equilibrium between

vapour and droplets in the condensation region is so fast that the vapour density in
that region equals ce given by the Clausius–Clapeyron relation (2.6) with a temperature
field obeying (2.9). Then the width of the CL is zero (0-CL theory). This simplified
equilibrium model was introduced and studied by Castillo & Rosner (1989). Here,
we revisit the model and give approximate formulas for the dew point shift from
Td due to the flow, for the location of the dew point interface, for the deposition
rates and for the maximum wall temperature having non-zero Jc. In later sections, we
shall determine how well the 0-CL theory approximates the solution of the complete
thermophysical model in § 2.

The validity of the simplified equilibrium model requires δ → 0, where δ is the
dimensionless length over which c−ce → 0 as indicated in § 3 for the case of stagnation
point flow. Similar considerations apply in the case of a general boundary layer flow.
Adopting the same units as in § 3 to non-dimensionalize the governing equations of
the model, the considerations made there apply to the general case for which lb is
a characteristic length associated with the carrier gas flow. Near the dew interface
Γ , the Clausius–Clapeyron relation (3.9) indicates that ce(x) decays rapidly as we
move inside the condensation region with the dimensionless length constant δe given
by (3.19), in which the asterisk denotes evaluation at Γ , T ′ = n · ∇T and n is the
outer normal to Γ pointing away from the wall. δe expressed in terms of dimensional
parameters is

δe =
kBT̃ 2

∗

Λlbn · ∇̃T̃∗
, (4.1)

typically, δe � 1. For the numerical values of the parameters employed in § 2, we find
δe = 0.1572.

Using lb and ν/lb as the units of length and velocity, the non-dimensional equation
for the vapour density in the region between Γ and infinity (the dry region) is

Δc − Sc u · ∇c = 0. (4.2)

The boundary condition far from the dew point interface (at infinity) is c → 1 (in
non-dimensional units), whereas c∗ = ce(T∗) on the dew point surface Γ . In typical
geometries with a known Γ , boundary value problem (4.2) is well-posed and c and
its normal derivative are functionals of Γ . To determine the dew point interface,
we have to use that the normal derivative of c is continuous on Γ . Using the
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Clausius–Clapeyron formula (3.9), this condition becomes

(1 − εT∗)
Td

T∗
exp

[
1

ε

(
1

Td

− 1

T∗

)]
=

ε T 2
∗ n · ∇c∗

n · ∇T∗
. (4.3)

The dew point interface is determined by solving (4.2) with boundary conditions
c = ce on Γ and c = 1 at infinity for different Γ until (4.3) is satisfied.

In summary, using the simplified equilibrium model, the dew point interface is
determined as follows:

(i) The flow field u and the temperature field T have been determined beforehand
and are considered known.

(ii) Equation (4.2) is solved with boundary conditions c = ce on Γ and c = 1 at
infinity for an arbitrary position of the interface Γ .

(iii) The position of Γ is changed until (4.3) holds.
In what follows, we consider the dew point shift in a Hiemenz stagnation point flow
of § 3.

4.1. Dew point location

Once (3.1)–(3.4) are solved, (3.9) yields the local equilibrium vapour density ce(x),
which equals the vapour number density for x <x∗. At the unknown position x∗, the
vapour number density and its derivative are obtained from (3.9):

c∗ =
Td

T∗
exp

[
1

ε

(
1

Td

− 1

T∗

)]
, c′

∗ = (1 − εT∗)
T ′

∗c∗

εT 2
∗

, (4.4)

where T∗ = T (x∗). We now solve (3.12) for x >x∗ with initial conditions (4.4) and
calculate c(+∞). We keep changing x∗ until we obtain the correct boundary condition
c(+∞) = 1 in (3.13). In terms of the solution ψ(x) of (3.27), we can calculate directly

c′(x) =
c∗ − 1

ψ∗
ψ ′(x) =⇒ c′

∗ =
c∗ − 1

ψ∗
ψ ′

∗. (4.5)

The location x∗ is found by equating c′
∗ to the expression (4.4). Inserting the analytical

solution (3.30) in (4.5), we get (see equation (68) in Castillo & Rosner 1988)

c′
∗

1 − c∗
= −ψ ′

∗
ψ∗

=
1∫ ∞

x∗
e−Sc

∫ y

x∗ udx ′
dy

. (4.6)

In this reference it is also proved that x∗ as given by the simple equilibrium theory is
always closer to the wall than the value given by solving the full problem (3.5)–(3.13).

The condition of continuity of c′(x) at x = x∗ is satisfied if we insert (4.4) in (4.6).
Then the left-hand side of (4.6) can be rewritten as

(1 − εT∗)T
′

∗
εT 2

∗ (1/c∗ − 1)
=

(1 − εT∗)T
′

∗
εT 2

∗ (T∗/Td exp [1/ε (1/T∗ − 1/Td)] − 1)
.

Now inserting T = 1 + (Tw − 1) Φ(x) in (4.6), we obtain the following equation for x∗:

ψ ′
∗

ψ∗Φ ′
∗

=
[1 − ε + ε(1 − Tw)Φ∗] (1 − Tw)

ε[1 − (1 − Tw)Φ∗]2 {(1 − (1 − Tw)Φ∗)/Td exp [1/ε (1/(1 − (1 − Tw)Φ∗) − 1/Td)] − 1} .

(4.7)
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Figure 2. (a) Non-dimensional temperature (T = T̃/T̃∞) versus distance to the wall (x = x̃/ lb).
We have marked the dew point temperature Td in the absence of flow, the approximate value
of the dew point interface (x∗, T∗) according to the simplified equilibrium model having a
condensation layer of zero width (circle) and the result of a direct numerical calculation of
that interface for entries A (square) and C (triangle) in table 2. For entry C in table 2, the
result of direct numerical calculation is very close to the prediction of the asymptotic theory.
(b) vapour density c versus x given by the approximate equilibrium model with the location
of the dew point interface marked by a circle. (c) Same as (b) but adding c(x) as given by
direct numerical calculation for entry C in table 2 (solid line; the triangle marks the dew point
interface) and by direct numerical calculation for entry A in table 2 (dot-dashed line; the
square marks the dew point interface). Here Tw = 0.5838, Td =0.8173.

4.2. Dew point shift

For the parameter values of § 3, the temperature and vapour density profiles are
depicted in figure 2. The dew point position turns out to be x∗ = 0.8815, and the
corresponding dimensionless temperature is T∗ = 0.7620, i.e. 1305 K because T̃∞ =
1713 K. We obtain a dew point shift T̃∗ − T̃d = −95 K. An approximate formula can
be obtained by rewriting (4.3) as

T∗ − Td = TdT∗ε

[
ln ε + ln

(
T 3

∗ c′
∗

TdT ′
∗

)
− ln(1 − εT∗)

]
. (4.8)

As ε → 0, T∗ → Td , so we can approximate T∗ ≈ Td , T ′
∗ ≈ T ′

d and c′
∗ ≈ c′

d in this formula
to get

T∗ − Td ≈ T 2
d ε

[
ln ε + ln

(
T 2

d c′
d

T ′
d

)
− ln(1 − εTd)

]
. (4.9)

xd is calculated by solving T (xd) = Td . Then c′
d = c′(xd). Equation (4.9) yields a dew

point shift −114 K, with a 13.6 % relative error. We see from figure 2 that the decrease
of vapour concentration from x = +∞ to x = x∗ is dramatic according to the simplified
equilibrium model, from c̃∞ =1.90 × 1013 cm−3 to c̃∗ = 0.1910 c̃∞ = 0.363 × 1013 cm−3.
The simplified equilibrium model is a good approximation for large values of R and
N as in entry C of table 2. For moderate values of R and N as in entries A and B of
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table 2, the approximate theory overestimates the decrease of vapour concentration
at the dew point interface.

4.3. Maximum wall temperature at which there is a CL

As Tw increases, x∗ decreases until x∗ = 0. This marks the absence of a CL of finite
width. At the corresponding wall temperature Tw,M , which is independent on the model
we use to describe vapour condensation on droplets, Jc = 0. At Tw,M , Φ∗ = ψ∗ = 1 and
the condition (4.7) provides the following equation for Tw,M as given by the 0-CL
theory:

Φ ′(0)

ψ ′(0)
=

εT 2
w,M

(1 − Tw,M )(1 − εTw,M )

{
Tw,M

Td

exp

[
1

ε

(
1

Tw,M

− 1

Td

)]
− 1

}
. (4.10)

For Td = 0.817 (1400 K) and ε = 0.0515 (as in table 2), we obtain Tw,M =0.755 (1293 K).

4.4. Deposition at the wall

Equation (3.15) holds in the condensation region, 0 < x < x∗ (and x∗ > 0 for Tw <Tw,M ),
no matter which formula we use for the rate of vapour condensation on droplets,
(Castillo & Rosner 1989). The vapour deposition rate and the total deposition rate
at the wall are given by inserting c(x) = ce(x) in (3.22) and (3.25), respectively. Then
Jc = J − Jv .

At Tw,M given by (4.10), Jc = 0 and J = Jv = c′
e(0)/Sc. For Tw,M � Tw <Td , Jc =0

and the deposition rate is given by J = [1 − ce(Tw)] |ψ ′(0)|/Sc (here we are using ce

as a function of T ). For wall temperatures slightly below Tw,M , (3.22), (3.23) and (4.7)
give J = c′

e(0)+ c′′
e (0)x∗ +O(x2

∗ ) with x∗ ∼ (Tw,M − Tw)/[(1 − Tw,M ) |Φ ′(0)|], as it follows
from (3.9). Here, ce(x) = ce(T (x)) and its derivatives are calculated for T (0) = Tw,M .
This yields

J ∼ 1 − Tw,M

Sc εT 2
w,M

|Φ ′(0)|ce(Tw,M )

[
1 − εTw,M +

1 − 4εTw,M

εT 2
w,M

(Tw,M − Tw)

]
. (4.11)

5. Small-width condensation layer (δ-CL)
In this Section, we shall correct the 0-CL theory (simplified equilibrium theory) in

the case δ � δe � 1 by assuming that the CL inside the dew surface is very thin and
detached from the wall. Then ρ, T and u can be approximated by their values at x∗.
The resulting δ-CL theory should hold even for relatively small R as in case A of
table 2.

For stagnation point flow, it is convenient to work with the non-dimensional
equations (3.5)–(3.13). Using C = c − ce, Rρ∗ =1/δ2, and ignoring the convective term
(because c′ � c′′ and c′

e � c′′
e if δ � δe � 1), (3.10) becomes

C ′′ − 1

δ2
n1/3C = −c′′

e = −c∗

δ2
e

e(x−x∗)/δe . (5.1)

Equation (5.1) should be solved with boundary conditions

C(x∗) = 0, C(0) = 0, c′
e(x∗) + C ′(x∗) = c′

∗. (5.2)

Here, c′
∗ is determined by solving (3.12) and (3.13) in addition to (5.1) and (5.2). Using

(4.4) for the equilibrium vapour density, the last condition (5.2) can be rewritten as

(1 − εT∗)
c∗

δe

+ C ′(x∗) = c′
∗. (5.3)
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Similarly, (3.7) and (3.8) become

n′ = − N

U∗
n1/3C, n(x∗) = 1. (5.4)

A rough approximation to n(x) is found as follows. We approximate ρU ≈ ρ∗U∗ and
c′′ + Sc uc′ ≈ c′′ in (3.16), thereby obtaining

n(x) = 1 +
N

Rρ∗U∗
[c′

∗ − c′(x)], (5.5)

or, equivalently,

n(x) − 1

nl

= 1 − c′(x)

c′
∗

, (5.6)

nl =
N c′

∗
Rρ∗U∗

=
D |n · ∇̃c̃∗|

ρ̃∗Ũ∗n∗
=

n∞

n∗
. (5.7)

Here, nl is the eventual number of vapour molecules per droplet in units of n∗.
For the parameter values in table 2 corresponding to a dew point temperature T̃d =
1400 K, nl = 0.044 and n∞ = nln∗ = 3.1×109. The number of vapour molecules needed
to cover a solid particle of radius [3n∗v/(4π)]1/3 with a single layer of liquid is
ns = 4n

2/3
∗ =5.2 × 107. Thus, n∞/ns =60 layers of condensed vapour cover each solid

particle in our numerical example and therefore our theory based on continuum
diffusive growth of droplets yields consistent results.

5.1. Vapour density profile and dew point location

Equations (5.1) and (5.4) can be written as a boundary layer problem in a new variable
ξ = (x∗ − x)/δe, with boundary conditions C = 0 at ξ = 0 (x = x∗) and at ξ = x∗/δe  1
(x =0):

μ2 d2

dξ 2
(C + c∗e

−ξ ) − n1/3C = 0, (5.8)

μ
dn

dξ
=

nl

c′
∗δ

n1/3C, (5.9)

where

μ =
δ

δe

, (5.10)

is the ratio of lengths for C and ce to decay to zero. Our numerical example shows
that nl is small, (5.6) implies that n − 1 → nl as ξ → ∞ and (5.9) with boundary
condition n(0) = 1 indicates that 0 � n − 1 � nl , so that n is always close to 1. If n ≈ 1,
(5.8) becomes a linear problem

μ2 d2

dξ 2
(C + c∗e

−ξ ) − C = 0, C(0) = 0, C

(
x∗

δe

)
= 0, (5.11)

whose solution is

C =
c∗μ

2

μ2 − 1

[
e−x∗/δe sinh (ξ/μ) − sinh ((ξ − x∗/δe)/μ)

sinh (x∗/(μδe))
− e−ξ

]

=
c∗δ

2

δ2 − δ2
e

[
sinh (x/δ) + e−x∗/δe sinh ((x∗ − x)/δ)

sinh (x∗/δ)
− e(x−x∗)/δe

]
. (5.12)
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If we let x∗/δ → + ∞, this formula becomes

C = c∗μ
2 e−ξ/μ − e−ξ

μ2 − 1
= c∗δ

2 e(x−x∗)/δ − e(x−x∗)/δe

δ2 − δ2
e

, (5.13)

which satisfies the conditions C(ξ = 0) = 0 =C(ξ = + ∞).
Now we need to calculate x∗ in such a way that the vapour flux c′(x) is continuous

at x = x∗. Equation (5.3) indicates that C should include a term of order ε. The result
is (1 − εT∗) times C in (5.12). Substituting this in (5.3), we obtain

c′
∗ =

(1 − εT∗) c∗

δ + δe

, (5.14)

where δe and δ are given by (3.19) and (3.18), respectively. This is a modified version
of the dew point shift equation (4.4) to which it reduces if δ � δe. Equation (5.14)
also holds for other flows if we interpret c′

∗ as the normal derivative of the vapour
density at the dew point interface.

To get x∗ in the case of a Hiemenz stagnation point flow, we solve

c′′ + Sc uc′ = 0, for x > x∗,

c∗ =
Td

T∗
exp

[
1

ε

(
1

Td

− 1

T∗

)]
, c′

∗ =
(1 − εT∗) c∗

εT 2
∗ /T ′

∗ + 1/
√

Rρ∗
, at x = x∗, (5.15)

instead of (3.12) and (4.4). Then we calculate c(+∞), which is a function of x∗, and
adjust x∗ until we obtain c(+∞) = 1. Once we know x∗, the vapour density profile in
the CL is found using (5.12):

c(x) = ce(x) +
c∗δ

2(1 − εT∗)

δ2 − δ2
e

[
sinh(x/δ) + e−x∗/δe sinh((x∗ − x)/δ)

sinh(x∗/δ)
− e(x−x∗)/δe

]
. (5.16)

These expressions give the decay of c to the equilibrium density ce(x). The function
C = c−ce has a maximum at x∗−[δδe/(δ−δe)] ln(δ/δe), decays to zero as (x−x∗) → −∞,
and c − c∗ ∼ (x∗ − x)/δ as x → x∗−. As shown in figure 3, (5.14) and (5.16) improve
the approximation of x∗ and T∗ with respect to the simplified equilibrium model.

5.2. Deposition at the wall

The vapour deposition rate and the total deposition rate at the wall for Tw <Tw,M

are given by inserting c(x) given by (5.16) in the exact equations (3.22) and (3.25),
respectively. Then Jc = J − Jv . For Tw,M � Tw <Td , the deposition rate is given by
J = [1 − ce(Tw)] |ψ ′(0)|/Sc(Jc = 0), in which we again use ce(0) = ce(T (0)) = ce(Tw).
Using (5.16), we have observed that Jc becomes zero for a certain Tw (which gives the
approximate Tw,M according to the δ-CL theory). However, for this wall temperature
x∗ > 0, and Jc becomes negative for larger wall temperatures. Thus, the δ-CL theory
gives unphysical results for the deposition rates for wall temperatures close to the wall
temperature for which the numerical solution of the complete model yields Jc = 0.

6. Condensation layer for large R

In the limit as R → +∞, the 0-CL theory gives an accurate description of the
condensation layer. How do we correct this theory for large finite R?
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Figure 3. Same as figure 2 for entry A in table 2. In (a), T∗ and x∗ are the values given by
the δ-CL theory, the square marks the value obtained by numerically solving the complete
model and the triangle marks the value provided by the 0-CL theory. In (b), the solid line
corresponds to the numerical calculation, the dashed line corresponds to (5.16) (δ-CL) and the
dot-dashed line to the 0-CL simplified equilibrium model. x∗ is marked by a square (numerical
calculation of the full model), a circle (δ-CL) and a triangle (0-CL).

Our idea is to use the method of nonlinear multiple scales in the limit as R → +∞.
The profiles T , u and ρ vary on the slow scale x and we define a fast nonlinear scale

X = R1/2 g(x; 1/R),
dX

dx
= R1/2g′, (6.1)

to be selected in such a way that the equation for the vapour concentration have
constant coefficients in the fast scale. The vapour density and n are given by the
expansions

c = ce + R−1 C(0)(X, x) + o(R−1), (6.2)

n = 1 + O(R−1). (6.3)

The choices c − ce = O(R−1) and n − 1 =O(R−1) are dictated by dominant balance
provided N = O(1) as R → ∞. Using (6.2) and (6.3) in (3.10) and (3.11), we find the
following equations and boundary conditions:

g′2 ∂2
XC(0) − ρ C(0) = −(c′′

e + Sc uc′
e), (6.4)

C(0)(0, x) = 0 = C(0)(X∗, x), c(x∗) = ce(x∗). (6.5)

Let us select g′ =
√

ρ, and therefore

X =

∫ x

0

√
R ρ(x) dx, X∗ =

∫ x∗

0

√
R ρ(x) dx, (6.6)

according to (6.1). Since δ = (Rρ∗)
−1/2 � 1 is a dimensionless decay length for C = c−ce

to vanish, dX = dx
√

Rρ is a fast scale based on a space-dependent decay length. Using



Heterogeneous vapour condensation in boundary layers 201

(6.6), (6.4) can be written as

∂2
XC(0) − C(0) = −c′′

e + Sc uc′
e

ρ
, (6.7)

whose left-hand side has constant coefficients. The solution of (6.5) and (6.7) is

C(0) =
c′′
e + Sc uc′

e

ρ

(
1 − sinhX + sinh(X∗ − X)

sinhX∗

)
. (6.8)

In principle, we should add a function of x to the right-hand side of (6.8). However
the boundary conditions (6.5) imply that such a function is identically zero. To find
n, we integrate (3.7) using the boundary condition (3.8), n(x∗) = 1 and use (6.8) into
the result, thereby obtaining

n2/3 = 1 +
2N

3R

∫ x∗

x

c′′
e + Sc uc′

e

ρU

(
1 − sinhX + sinh(X∗ − X)

sinhX∗

)
dx + o(R−1), (6.9)

and equivalently,

n(x) = 1 +
N

R

∫ x∗

x

c′′
e + Sc uc′

e

ρU

(
1 − sinhX + sinh(X∗ − X)

sinhX∗

)
dx + o(R−1). (6.10)

Note that (6.10) is consistent with (6.3).

6.1. Vapour density profile and dew point location

The vapour density profile is found from (6.6) and (6.8) as

c(x) ∼ ce(x) +
c′′
e (x) + Sc u(x)c′

e(x)

Rρ(x)

(
1 − sinhX(x) + sinh[X∗ − X(x)]

sinhX∗

)
. (6.11)

The location x∗ of the dew point interface is found by imposing that the derivative
of the vapour density be continuous there. To order R−1/2, we have from (6.11):

c′
∗ = c′

e(x∗) − c′′
e (x∗) + Sc u∗c

′
e(x∗)√

Rρ∗

coshX∗ − 1

sinhX∗
. (6.12)

We have omitted the terms of order 1/R because (6.11) does not include corrections
of order R−3/2, and such corrections also contribute O(1/R) terms to c′(x). Similarly,
at the wall we have

c′(0) = c′
e(0) +

c′′
e (0)√
Rρ(0)

coshX∗ − 1

sinhX∗
. (6.13)

To get x∗ in the case of a Hiemenz stagnation point flow, we solve (3.12) with
c∗ = ce(x∗) and (6.12) with X∗ given by (6.6).

6.2. Deposition at the wall

Using (3.22) and (6.13), we calculate Jv and using (6.10) in (3.23), we find Jc. We
obtain

Jv =
1

Sc

(
c′
e(0) +

c′′
e (0)√
Rρ(0)

coshX∗ − 1

sinhX∗

)
+ O

(
1

R

)
, (6.14)

Jc =
ρ(0)U (0)

Sc

∫ x∗

0

c′′
e + Scuc′

e

ρU

(
1 − sinhX + sinh(X∗ − X)

sinhX∗

)
dx + O

(
1√
R

)
(6.15)

and J = Jv + Jc. As R → +∞, (6.14) and (6.15) coincide with the corresponding
expressions of the 0-CL theory.
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– 0-CL δ-CL (A) num. (A) δ-CL (C) NLMS (C) num. (C)

x∗ 0.8815 1.0574 1.0666 0.9152 0.9212 0.9146
T∗ 0.7620 0.7946 0.7962 0.7683 0.7695 0.7682
T ′

∗ 0.1902 0.1803 0.1797 0.1885 0.1882 0.1886
u∗ 0.3700 0.5045 0.5119 0.3948 0.3992 0.3943
U∗ 0.3950 0.5272 0.5344 0.4193 0.4237 0.4189
c∗ 0.1910 0.5215 0.5475 0.2341 0.2426 0.2332
c′

∗ 1.1676 0.7875 0.7499 1.1327 1.1240 1.1334
ρ∗ 0.9758 0.9807 0.9809 0.9768 0.9770 0.9768
δ – 0.4548 0.4547 0.0372 0.0372 0.0372
δe 0.1572 0.1803 0.1817 0.1613 0.1620 0.1612
Jv 0.0007 0.1365 0.1658 0.0015 0.0009 0.0045
Jc 0.0876 0.0694 0.0618 0.0879 0.0886 0.0849
J 0.0883 0.2059 0.2276 0.0894 0.0896 0.0894

Table 3. Dimensionless results for wall temperature Tw = 0.5838 (1000K). Results obtained
with the simplified equilibrium theory corresponding to a zero-width CL are in the column
0-CL, those obtained with matched asymptotic expansions for a CL of width δ are in the
column δ-CL, whereas NLMS refers to corrections to the equilibrium theory obtained using
the method of nonlinear multiple scales. Results obtained by solving numerically the complete
model are indicated by ‘num.’. In this table, (R,N ) are (4.93,0.11) and (739.5,1.65) for entries
labelled A and C, respectively. The values of α, ε, Pr and Sc are as in table 2.

7. Numerical results
In this Section we shall compare the location of the dew point interface, the dew

point temperature shift and the deposition flux at the wall obtained by the asymptotic
theories of §§ 4, 5 and 6 to the values given by a direct numerical solution of the free
boundary problem (3.5)–(3.13) for stagnation point flow. We have considered four
representative parameter choices to illustrate the ranges of validity of our different
asymptotic approximations.

Firstly in table 3, we use T̃∞ =1713 K, T̃d =1400 K and T̃w =1000 K for two choices
of R. Choice A has R = 4.93 leading to relatively large width of the condensation
layer (in which c �= ce), whereas R is 150 times larger for Choice C leading to a
very narrow condensation layer. In both cases, the CL is relatively detached from the
wall (x∗/δe ≈ 5.87 and 5.67 for cases A and C, respectively), but setting x∗/δe = +∞ as
in (5.13) yields poor approximations for the vapour profile and the deposition rates.
Table 3 compares the results given by the simplified equilibrium theory (0-CL), the
δ-CL theory given by (5.16) and related expressions, by the NLMS theory (choice C
only) and by direct numerical simulation of the problem (3.5)–(3.13). As R increases,
the shooting problem which yields x∗ is ill conditioned. Then we need to calculate
many significant digits of x∗ to get a good approximation of the deposition rates Jv ,
Jc and J in table 3. The x∗ values are given with four digits in table 3, but we have
calculated them with 6 and 12 digits for parameter choices A and C, respectively.

For low wall temperature and small values of R, the 0-CL theory gives much
worse values of x∗ than the δ-CL theory. This is also shown in figure 3: the 0-CL
theory yields a vapour density curve below the others. Equation (5.16) provides the
best approximation to the numerical solution of the complete problem. According to
our expectations, the simplified equilibrium theory is a good approximation for large
values of R (cf. figure 2). Table 3 shows that the three asymptotic theories, 0-CL,
δ-CL and NLMS, underestimate the flux Jv and overestimate Jc, thereby yielding
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Figure 4. Same as figure 3 for entry A in table 2 and Tw = 0.7298 (1250K). In (b), we have
depicted the numerical solution of the full model (solid line, square), (5.15) and (5.16) (dashed
line, circle) and the simplified equilibrium model (dot-dashed line, triangle).

reasonable values of the total deposition rate J . For this low Tw , the δ-CL theory
gives the best results and the 0-CL theory the worse ones.

Figures 4 and 5 depict the vapour density for R and N as in entries A and C
of table 3 but for a higher Tw = 0.7298 (T̃w = 1250 K) close to Tw,M = 0.755. The
dew point interface is closer to the wall (x∗/δe ≈ 1.43 and 2.09 for cases A and C,
respectively). For parameter choice A, c(x) is approximated better by the 0-CL theory
than by the δ-CL theory, whereas for the larger R of choice C, all three asymptotic
theories approximate well the numerical result. The poorer performance of the δ-CL
theory for parameter choice A is a consequence of the fact that Tw is close to Tw,M .
For somewhat lower Tw = 0.7006 (1200 K), x∗/δe = 2.61 (choice A) and 2.09 (choice
C). Table 4 shows that the δ-CL theory gives the best approximation to the deposition
rates. As before in table 3, the x∗ values are given with four digits in table 4, but
we have calculated them with five and seven digits for parameter choices D and
E, respectively. For the higher Tw in table 4, x∗ is smaller than in table 3 and less
precision is needed to calculate the deposition rates.

Figures 6–10 show the dependence of deposition rates, dew point location, T∗ and c∗
with Tw . They can be used to compare the different asymptotic theories. Figures 6(a)
and 7(a) show that there is a value of Tw,M for which Jc =0: at this value,
the thick solid line representing Jc =0 (3.32) departs from the numerical J . This
value is overestimated by the 0-CL theory and underestimated by the δ-CL theory,
whereas the NLMS theory gives a somewhat better prediction. The δ-CL theory
predicts Jc =0 with x∗ �= 0 for a wall temperature smaller than the numerical Tw,M .
For larger Tw , the δ-CL theory yields non-physical rates Jc < 0 and smaller x∗ which
eventually become zero. For the parameter choice A in table 3, figure 6 indicates
that the δ-CL theory is better than the 0-CL theory for Tw <Tw,M but not very
close to Tw,M . Fortunately, in a small neighbourhood of Tw = Tw,M the 0-CL theory
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– 0-CL δ-CL (D) num. (D) δ-CL (E) NLMS (E) num. (E)

x∗ 0.3900 0.6074 0.5694 0.4283 0.4305 0.4252
T∗ 0.7579 0.7897 0.7842 0.7635 0.7639 0.7631
T ′

∗ 0.1476 0.1446 0.1453 0.1472 0.1472 0.1473
u∗ 0.0840 0.1909 0.1697 0.1001 0.1011 0.0988
U∗ 0.1034 0.2092 0.1882 0.1194 0.1204 0.1180
c∗ 0.1675 0.4512 0.3823 0.2010 0.2031 0.1980
c′

∗ 0.8033 0.6390 0.6935 0.8004 0.7980 0.8000
ρ∗ 0.9708 0.9784 0.9773 0.9724 0.9725 0.9723
δ – 0.4553 0.4556 0.0373 0.0373 0.0373
δe 0.2004 0.2221 0.2180 0.2041 0.2039 0.2036
Jv 0.0688 0.3172 0.3148 0.0832 0.0826 0.0919
Jc 0.1627 0.0492 0.0316 0.1524 0.1486 0.1437
J 0.2315 0.3664 0.3464 0.2356 0.2312 0.2356

Table 4. Dimensionless results for wall temperature Tw = 0.7006 (1200K). Case D corresponds
to R = 4.93 and N = 0.11 whereas Case E corresponds to R = 739.5 and N = 1.65. The values
of α, ε, Pr and Sc are as in table 2.

1 20

0.2

0.4

0.6

0.8

1.0

x

c(
x)

x
*

2 40

0.2

0.4

0.6

0.8

1.0

x

T
(x

)

x
*    

xd

Td

T*

(a) (b)

Figure 5. Same as figure 3 for entry C in table 2 and Tw =0.7298. In (b), the vapour density
profiles provided by the 0-CL, δ-CL and NLMS theories overlap the numerical solution of
the full model. However, x∗ as calculated using the 0-CL theory does not approximate the
numerical value as precisely as the calculation using the δ-CL and NLMS theories.

and its correction by NLMS provide a good approximation to the deposition rates.
For Tw > Tw,M (3.32) or equivalently J = [1 − ce(Tw)]|ψ ′(0)|/Sc (obtained by setting
Jc = 0) is exact. As we may have expected, all three asymptotic theories provide good
approximations to Jv , Jc and J for large R, as shown in figure 7.

In figure 8, we show the dew point location in terms of Tw . For low R, the δ-CL
theory approximates better the numerical x∗ except very close to its estimated value
of Tw,M (for which the δ-CL theory gives Jc = 0 with x∗ �= 0, marked with a circle in
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theory (circles), dot-dash line: equilibrium (squares), the thick solid line: the exact deposition
rate calculated with Jc = 0. The NLMS approximation can only be calculated for the wall
temperature marked with an asterisk and higher ones. The values of α, ε, Pr and Sc are as in
table 2.
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Figure 7. Deposition rates (a) J , (b) Jv and (c) Jc as functions of the wall temperature for
R = 73.95, N = 0.11. (d) is a zoom of (a) near the maximum value of J . Solid line: numerical
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position rates for Tw,M � Tw < Td where Jc = 0. The values of α, ε, Pr and Sc are as in table 2.
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Figure 8. Dew point location versus wall temperature for (a) R = 4.93, N = 0.11, (b) R =73.95,
N = 0.11 and (c) R = 739.5, N = 1.65. Values of α, ε, Pr and Sc are as in table 2. Data are
obtained from the numerical solution of the complete model (solid line, triangle), the 0-CL
theory (dot-dash line, square), the δ-CL theory (dash line, a circle) and NLMS (dot line,
asterisk). The triangle, square, circle and asterisk correspond to the same wall temperature.

the figure). But for such values of Tw , the NLMS theory takes over and it yields a
good approximation to the numerical value of x∗. Figures 8(b) and 8(c) show that the
NLMS theory is a good approximation to the numerical x∗ as Tw approaches Tw,M

for intermediate and for large values of R. Similarly, Figures 9 and 10 show that the
NLMS approximates well T∗ and c∗ for Tw very close to Tw,M . This is so also for
small R in figures 8(a), 9(a) and 10(a), in which the NLMS approximation can be
calculated only for sufficiently large wall temperatures, close to Tw,M . Below a certain
wall temperature, (6.12) does not have a solution, and therefore the NLMS theory
does not provide an approximate x∗. At a lower wall temperature Tw,c, the values of
c∗ and T∗ given by the δ-CL and NLMS theories coincide. A good compromise to
attain a uniform approximation could be to use the δ-CL theory for Tw <Tw,c, the
NLMS theory for Tw,c < Tw < Tw,M and (3.32) for Tw,M <Tw <Td .

8. Discussion
We have considered heterogeneous condensation of vapours mixed with a carrier

gas in the stagnation point boundary layer flow near a cold wall. For the case of
Na2SO4 vapours in air with a diluted suspension of solid particles with radius 1
micron, the mean free path of vapour particles is one tenth of the particle radius,
so we have assumed that the supersaturated vapour condenses on the particles by
diffusion. This is different from the kinetic theory formulas used by Castillo & Rosner
(1988) and later authors (Filippov 2003), which are valid in the opposite limit in
which the mean free path is much larger than the particle size. The particles and
droplets move towards the wall by thermophoresis and the Soret and Dufour effects
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Figure 9. Same as figure 8 for the dew point temperature versus wall temperature diagram.
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Figure 10. Same as figure 8 for the vapour concentration at x∗ versus wall temperature
diagram.

have been ignored. We have assumed that the heat of vaporization is much larger
than the Boltzmann constant times the temperature far from the wall. Under these
conditions, vapour condensation occurs in a condensation layer whose distance to
the wall, width and characteristics depend on the parameters of the problem.

We have presented different asymptotic theories of the condensation process,
calculated the shift in the dew point interface due to the flow, the vapour density
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profile and the deposition rates at the wall and compared them to direct numerical
simulation of the equations governing the model. The simplest 0-CL theory, already
studied by Castillo and Rosner, assumes that the width of the condensation layer is
zero and that the vapour is in equilibrium with the condensed liquid in the dew surface.
A more complete δ-CL theory considers a condensation layer of finite width within
which the vapour density has not yet reached local equilibrium with the liquid. In
the CL, temperature, velocity and droplet density are approximated by their constant
values at the dew point interface and the vapour density satisfies a linear equation.
The deposition rates at the wall are calculated using this approximate profile in exact
expressions for the rates. The δ-CL theory approximates well the numerical vapour
profile and deposition rates (better than the 0-CL theory) except in a narrow interval
of wall temperatures near a maximum value Tw,M at which the deposition rate Jc of
vapour coated droplets becomes zero. In the limit as the product R of particle density,
particle radius and the square of the Hiemenz width tends to infinity, the width of the
CL tends to zero and an asymptotic calculation based on NLMS approximates well
the vapour density and deposition fluxes given by a numerical solution of the full set
of model equations. For moderate and low values of R, the multiple scales calculation
holds for wall temperatures close to the maximum one and corrects there the δ-CL
theory. If we denote by Tw,c the wall temperature at which the multiple scales and
δ-CL theories produce the same value of x∗, we obtain a uniform approximation to
the deposition rate by using the δ-CL theory for Tw <Tw,c, the NLMS theory for
Tw,c < Tw <Tw,M and the exact expression (3.32) for the case Jc = 0 if Tw,M <Tw <Td

(Td is the dew point temperature in the absence of flow). Note that for large R, all
three asymptotic theories yield reasonable values of the deposition rates for almost
any wall temperature because Tw,M −Tw,c is very small and the correction to the 0-CL
theory given by NLMS vanishes as R → ∞.

A more complete thermophysical model of heterogeneous condensation and
deposition of condensed vapour on cold walls is due to Gökoglu & Rosner (1986)
who assumed that the viscosity, thermal conductivity, specific heat and density of
the carrier gas depend on powers of the temperature T̃ , and so does the diffusion
coefficient of the vapour. In addition, the thermophoretic coefficient is α ∝ 1 − C/T̃ .
A simpler version of this model was used by Filippov (2003) to analyse the OVD
process. This author considers that the carrier gas density may vary in the boundary
layer and that its viscosity is proportional to T̃ m, where m varies between 0.5 and 0.7.
In addition, the flux of vapour includes thermal diffusion (Soret effect) and the rate
of vapour condensation on a spherical solid particle is given by the kinetic theory
formula in Castillo & Rosner (1988), assuming that the mean free path is much larger
than the particle size (different from the case we consider in the present paper). Of all
these additional processes, considering a temperature-dependent viscosity produces
the greatest effects in particle concentrations and deposition fluxes (Filippov 2003).
For the OVD process, the particle density ρ̃∞ is much larger than the values we have
considered here, which results in values of R much larger than those considered in
the present paper. Filippov’s analysis uses a fast linear multiple scale ξ =

√
Rx (in

our notation) instead of our scale X =
∫ x

0

√
Rρ dx in the limit as R → +∞, N = O(R),

thereby obtaining a solution C(0) that contains exponentials of x
√

Rρ(x) instead of X.
If we use Filippov’s multiple scales in our simpler thermophysical model, the equation
for C(0) such that c − ce ∼ R−1C(0) and n − 1 ∼ R−1n(0) becomes

∂2
ξ C

(0) − ρ C(0) = −(c′′
e + Sc uc′

e), (8.1)
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instead of (6.4), and the boundary conditions for C(0) are still (6.5). The solution of
this boundary value problem is

C(0) =
c′′
e + Sc uc′

e

ρ

(
1 − sinh[ξ

√
ρ(x)] + sinh[(ξ∗ − ξ )

√
ρ(x)]

sinh[ξ∗
√

ρ(x)]

)
, (8.2)

instead of (6.8). Equation (8.2) corresponds exactly to (70) for c − ce in Filippov
(2003). Unless ρ is constant (cf. l(η) is constant in Filippov 2003), Filippov’s
results are inconsistent: calculation of the next order correction C(1) in c −
ce ∼ R−1C(0) + R−3/2C(1), which solves

∂2
ξ C

(1) − ρ C(1) = −2∂ξ∂xC
(0) − Sc u∂ξC

(0), (8.3)

would give terms proportional to ξ 2. Then R−3/2C(1) would contain terms proportional
to R−1/2x2 which are not small compared to R−1C(0). Inconsistency is thus tracked to
the mixture of slow and fast scales in the solution C(l), l = 0, 1. The same mixture of
scales also occurs for the droplet radius (equivalent to our n1/3). In Filippov (2003),
the results of the analysis are not compared to a direct numerical solution of the
complete thermophysical model. Then we do not know whether the perturbation
method used in that paper produces results that at least give the correct order of
magnitude. It is clear that the methods explained in the present work can be applied
to the more detailed thermophysical model of Filippov (2003) or to that of Gökoglu
& Rosner (1986).
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